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Abstract 

The existing factor rotational methods (an assortment of orthogonal, oblique and 
simplex techniques) are assessed for their potential to be generalized for use at higher 
dimensions (i.e. above threefold factor space). An answer is sought to the problem of 
why the application of an orthogonal rotation results in mathematical solutions (those 
containing negative entries) rather than all positive solutions having physical and chemical 
meaning. Such positive solutions will be within the limits of experimental error if non- 
perfect data is used. An evaluation of a methodological improvement to an algorithm 
on factor analysis based on the optimization of the m ( m  - 1) independent variables of 
a transformation matrix T '  of m factors is made, and a case is presented for its introduction 
as a realistic alternative to the established methods. 

1. Introduction 

Factor analysis is a popular but conceptually little understood technique of 
multivariate data analysis, used in chemistry to evaluate spectroscopic as well as 
other types of data. From its application, one can determine: 

(1) the number of primary components; 

(2) the nature of the primary components (i.e. their chemical identity); and 

(3) how much of each component is present in each of the mixtures (i.e. their 
relative concentrations). 

The basic concepts of factor analysis, and its application to IR spectroscopy 
in particular, has already been fully discussed in earlier papers [1-3].  This study 
addresses only a specific area of the factor problem: namely, the ambiguity of 
rotational methods and the need to use a non-orthogonal transformation. Four principal 
objectives are defined: 

(1) Firstly, to review the existing factor rotational methods and assess their 
usefulness. 

(2) Improve understanding of the factor transformation step. 
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(3) Give examples, using perfect data, of the type of solutions produced using 
T and R (T represents a general (non-orthogonal) transformation matrix and 
R an orthogonal rotation). 

(4) To evaluate the merits and potential of a new approach to factor theory which 
is dependent on the software-controlled optimization of a general (non- 
orthogonal) transformation matrix T' .  

Factor theory is a general term used in the broadest sense to describe the 
mathematical basis of factor analysis - the analytical technique. It involves two 
main processes: eigenanalysis and a transformation step. The latter term refers to 
that part of factor theory which requires some form of transformation to convert the 
intermediate solutions given by Sm and V m into factor solutions which are equivalent 
to (for perfect data only) or closely approximate the true solutions. 

The difficulty in finding a suitable transformation is a major hurdle to the 
advancement of factor analysis as a general analytical technique. Only by finding 
the correct transformation can the intermediate solutions be converted into factor 
solutions which closely approximate the true solutions. When applied to IR spectroscopy, 
the eigenspectra and pseudo concentration matrices must be transformed via application 
of an appropriate transformation into the primary component spectra and concentration 
matrices, respectively. 

1.1. LIMITS OF ANALYTICAL TRACTABILITY 

The separation and identification of individual components within a multi- 
component mixture is a major problem for the analytical chemist. It is both expensive 
and time-consuming, so tends to be avoided whenever possible. Although factor 
analysis showed great potential as an analytical technique, it was not until the 
1980's, when the specific advantages of a computerized approach became apparent, 
that its popularity increased. Prior to this time, the technique was not suitable for 
routine use, being limited to problems involving a couple of factors. This was 
mainly due to the repetitive nature of the calculations involved. By adopting a 
computerized approach for which factor analysis is perfectly suited, the method has 
been transformed into a widely used analytical tool which is labour saving, efficient 
and relatively cheap to implement. New methods of tackling the reconstruction of 
the primary components (i.e. via optimization) have now become possible. 

1.2. CHEMICAL APPLICATIONS 

The introduction of factor analysis into chemistry, and particularly vibrational 
spectroscopy, began during the 1970's [4-7]. Kowalski et al. [8-10] and Gilbert [11] 
helped to popularize the method by extending its use into other areas of chemistry. 
In recent years, it has been extensively applied to problems encountered in science, 
medicine and technology. The main concern here, however, is with the application 
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of  factor analysis to IR spectroscopy. The articles by Gemperline [12], Brown 
et al. [13], and Beebe et al. [14] provide numerous references on factor analysis and 
associated methods. 

We shall begin with a critical assessment of the existing factor rotational 
methods. 

2. Factor rotational methods 

Factor rotational methods is the collective name given to a whole variety of 
techniques which are used to carry out the intermediate transformation step in factor 
theory. These methods are summarized in fig. 1. They include: 

(1) Orthogonal rotations which preserve the angles between the axes. 

(2) Non-orthogonal rotations (oblique rotations) which do not preserve the angles 
between the axes. 

Sometimes, a further subdivision then occurs into: 

(1) Analytical rotations - those dependent on rules to "simplify" the solutions. 

(2) Empirical rotations - those relying on practical experience (i.e. experiment). 

Confusion exists in the literature concerning the terminology used to describe 
the transformation step [15, p. 48]. There has been a general tendency to interchange 
the words transformation and rotation. In keeping with their graphical approach to 
solution hunting and the need to determine "axes of rotation", the early researchers 
were inclined to favour the word rotation. 

To date, most of the work on factor theory has depended on traditional 
rotational methods. Such methods include analytical rotations, which can be orthogonal 
(varimax and quartimax) [16, 17] or oblique (oblimax, quartimin, etc.) [15, 18]. By 
far the most popular of the former group are varimax rotations [19]. These have 
been used in the majority of publications. Many authors have been quick to point 
out that standard transformations such as varimax rotations do not appear to be very 
satisfactory [20,21] and [22, p. 37]. 

Empirical methods include target rotation (also known as least-squares rotation). 
Target factor analysis (TFA) provides a means of determining whether or not a 
particular component is present in the multicomponent mixture. Most articles on 
TFA do not specify the nature of the rotation [23-25];  a few refer to the use of 
an oblique [ 15, 21 ] or orthogonal rotation [ 17], while others refer to a transformation 
matrix [26,27]. 

and 

In summarizing TFA, we begin with the factor equations 

= Sm R (1) 

R- Vm. (2) 
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Commercial 
Orthogonal 
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Methods 
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Fig. 1. Techniques used to carry out the transformation step in factor theory. 

= softwave derived, spectral factor solutions, 
~" = software derived, relative concentration matrix, 
Sm = reduced eigenspectra matrix (m-fold factor space), 
V,, = reduced pseudo concentration matrix (m-fold factor space). 

m corresponds to the number of factors. On rearranging eq. (1), this leads to the 
TFA equation 

T -1 T = R = (SmSm) SmS. (3) 



A. Muller, The transformation step in factor theory 367 

The major disadvantage of TFA is the need to know the identity of the primary 
components so that a suitable test vector can be chosen; otherwise, the prospect of 
matching the factor solution against possible components would be a daunting task. 
TFA requires that the test vector be prepared under conditions closely resembling, 
or indeed duplicating, those used to construct the multicomponent spectral absorbance 
data matrix D [28,29]. The efficiency of this method depends on the ability of the 
analyst to accurately locate the correct test vector. When used in conjunction with 
a spectral reference library, the effectiveness of TFA is greatly increased [30-32]. 
Then a large number of "possible" primary components (i.e. library spectra) can be 
scanned, greatly simplifying the identification process. 

Other factor rotational approaches include simplex-based methods which require 
a geometrical representation [33-35]. These become visually difficult to interpret 
at higher dimensions, thus severely limiting their general application to factor 
theory. Indeed, no example above three factors could be found which utilized 
simplex rotational methods. Quoting from Borgen and Kowalski [36, p. 24], "the 
practical generalization of the necessary algorithms is not a trivial problem" and 
that "the location of permitted regions will require very efficient programming in 
the multicomponent case". 

Several groups have attempted to use polar transformations but, like simplex 
methods, they are only really suited to problems involving a few factors [37-39]. 
(Here, examples are mainly restricted to areas of chemistry other than IR spectroscopy.) 
If further advancement is therefore to be made toward a generalized factor analytical 
technique, it will be necessary to look for new approaches toward the transformation 
step rather than try to extend the existing rotational methods. 

3. The factor transformation step 

The non-uniqueness of the factor equations S = SmT and V = T-1Vm is well 
established [1]. However, provided S and D are known for a given data set, then 
there exists a unique general (non-orthogonal) transformation matrix T which satisfies 
these equations. This implies that a unique orthogonal rotation R cannot also exist 
which satisfies these equations. The application of R results in intermediate matrices 
having only mathematical meaning. 

From worked examples using perfect data, it will be shown that: 

(1) A unique general transformation matrix T exists that satisfies the factor 
equations 

D = D m = SmTT-1Vm (4) 

= SmT (5) 

and 
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= T-t V,.. (6) 

If 

= S, (7) 

(S contains the spectra of the m primary components) and 

= 9,  (8) 

(9  is the relative concentration matrix of the m pure components), then 

D = S V. (9) 

Returning to the factor solutions, 

Dm = SV. (10) 

(2) On_application of the unique T, S,. is directly transformed into the pure 
components S" 

S m ~ S. (11) 

Likewise, 

V,. Y_~ 9. (12) 

(3) A unique R cannot also exist which satisfies the same factor equations. 
Now 

D _= D m = S,,RR-1V,,. (13) 

The factor solutions are given by eqs. (1) and (2). However, 

g # S.,R (14) 

and 

Thus, 

and 

9 ¢: R-IVm. (15) 

~e S (16) 

~z ~= 9,  -(17) 

hence, 

D., ~ SV. (18) 
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(4) Application of R results in factor solutions ~ and ~¢, which are only 
mathematical solutions. These are solutions with negative entries. 

S,,, .E) ~ 2_> ~. (19) 

Likewise, 

R-I 
Vm 9. (20) 

When these equations are applied to experimental data, slight modifications are 
required. For instance, eqs. (7) and (8) are no longer exact due to noise error; thus 

and 

. 

by 

and 

O r t h o g o n a l  v e r s u s  n o n - o r t h o g o n a l  t r a n s f o r m a t i o n  

The basic factor equations associated with the use of a rotation R are given 

= StaR (21)  

9 = R-1V,,,. (22) 

R is an orthogonal matrix since 

RTR = I (23) 

and therefore 

R-I = R T. 

Now, if we apply the analogue of the orthogonality condition for square matrices 
to rectangular matrices, then S is shown to be non-orthogonal since 

g z g  ~ I. (24) 

Likewise, for the true solutions 

~ r g  ;e I. (25) 

On applying the orthogonality condition to the RHS of eq. (1) 
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(SmR)T(Sm R) = RTSTSm R 

and making the substitution given by 

= S,,,S,,,, A m  T 

i.e. 

then 

(26) 

(SmR)T(Sm R) = RTAm R ~ I.  

By making use of eqs. (23)-(25) and (27) to demonstrate the orthogonality/non- 
orthogonality of each term in question, we can therefore show that eq. (1), i.e. 

Non-or~hogonal S = Non-orthogonal S m × Orthogonal R 

and eq. (21) 

Non-orthogonal S = Non-orthogonal S m × Orthogonal R 

hold. However, 

Let sk be the kth column and gj the j th  column of S, respectively; then 

sfsj # 1. 

Repeating this for s k and sj, the kth column and j th  column of S m 

sTsj = O, k ¢: j, 

sTsj * 1. 

For the factor solutions, there are two possibilities: 

Case 1 

=T = 
Sk Sj ~ O, 

=T = 
sj sj . l 

k 4:j, 

S~Sm ~ I, (27) 
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(see the example given in section 3, using rotation R), or 

Case 2 

= T  = 
sks j=O,  k ~ j ,  

- T  = si si , 1 .  

This situation would arise, for example, if the values assigned to the Euler angles 
for the general 3D rotation given by eq. (46) were ~ = 90 °, 0 = 90 ° and ~ = 90 °. 

4.1. CASE 1 

Sm R ~ ? 

eigenspectra factor solutions true spectra 
MO not MO not MO 

MO implies that the columns are mutually orthogonal. 
In case 1, the factor solutions, like the true solutions, are not mutually orthogonal, 

although ~ and S agree in this respect 

i.e. eq. (16) holds. ~ contains substantial negative entries, therefore it cannot represent 
the true solutions. The mutual orthogonality between the columns of  S,,, has not been 
preserved by R. 

4.2. CASE 2 

Sm R ) 8  ? ) S  

eigenspectra factor solutions true spectra 
MO MO not MO 

The mutual orthogonality between the columns of S,,, and ] has been preserved by 
R. The factor solutions and true solutions therefore differ with respect to the MO 
condition. Again, eq. (16) holds. Repeating the argument for the concentration 
matrix, 

v T v  ~: I.  (28) 

Also, 
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~T~¢ ¢ I. 

Applying the orthogonality condition to the RHS of eq. (2) leads to 

(RTVm)T(RTVm) = VTRRTVm 

:v~vm 

Now, 

(29) 

v,. = Q~. (30) 

Here, Qm is a rectangular matrix representing the reduced set of eigenvectors in m- 
fold factor space, obtained from the covariance matrix Z given by 

Z = DTD.  

Premultiplying eq. (30) by V T gives 

v~v~ = Q~Q~. 

In the reduced factor space, QmQ T ¢ I but QTmQ m = I. Hence, 

V~Vm ;~ I, (31) 
but 

VmV T = I. (32) 

Using eqs. (23), (28), (29) and (3 I) to likewise show the orthogonality/non-orthogonality 
of each term in eqs. (2) and (22), i.e. 

Non-orthogonal V = Orthogonal R -I × Non-orthogonal V m 

and 

Non-orthogonal 9 = Orthogonal R - l ×  Non-orthogonal V m. 

Once again, even though the fundamental equations (2) and (22) hold, 

ev~9. 

Note that if eq. (32) were used instead of eq. (31), then the RHS of  eq. (2) gives 
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~ w  

v v T =  (RTVm) (RTVm) T 

= RTvm V~R 

= RTR 

= I .  

However, 

From a consideration of  all these facts, it therefore seems inappropriate to use R 
since this will not result in the true solutions. 

5. Factor theory applied to perfect data (m = 3 case) 

5.1. OBTAINING THE GENERAL (NON-ORTHOGONAL) TRANSFORMATION MATRIX 

A brief account will now be given on how the general transformation matrix 
for a particular set of  data is obtained. For the m = 3 case, S consisted of three 
columns - the primary component spectra, constructed from perfect data (i.e. data 
that contain no noise). Six distinct multicomponent spectra d k (where d k is the kth 
mult icomponent spectrum of  D) were then artificially generated from the linear 
sums of various combinations of ~j (~j being the j th  column of S, where j =  1 . . . . .  m) 
to form the spectral absorbance data matrix D (eq. (36)). The six multicomponent 
spectra dk are given by: 

dl = gl + s2, (33) 

d2 = s1 + $3, 

d3 = $2 + $3, 

d n = 0.5 Sl + 0.25 s2, (34) 

d 5 = 0.5 gl + 0.25 s3, 

d 6 = 0.5 s2 + 0.25 s3. 

From a knowledge of  the individual components and their amounts present in every 
column of  D, Vcould therefore be constructed. The eigenspectra matrix S contained 
m eigenspectra corresponding to the primary (true)eigenvectors.  The remaining 
n - m eigenspectra, where n is the number of multicomponent spectra in D, contained 
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all zero entries (for perfect data only). These correspond to the secondary eigenvectors 
(or insignificant noise terms) produced by experimental data: 

1 1 1 
2 1 1 
3 2 2 
4 2 4 
5 3 4 
6 4 9 
5 7 6 
4 5 5 
3 6 4 
2 3 3 
1 2 2 
1 1 1 

l i  1 0 0.50 0.50 0 1 
0 1 0.25 0 0.50 
1 1 0 0.25 0.25 

(35) 

2.00 2.00 2.00 0.75 0.75 0.75 ~ 
3.00 3.00 2.00 1.25 1.25 0.75 
5.00 5.00 4.00 2.00 2.00 1.50 
6.00 8.00 6.00 2.50 3.00 2.00 
8.00 9.00 7.00 3.25 3.50 2.50 

10.00 15.00 13.00 4.00 5.25 4.25 
12.00 11.00 13.00 4.25 4.00 5.00 
9.00 9.00 10.00 3.25 3.25 3.75 
9.00 7.00 10.00 3.00 2.50 4.00 
5.00 5.00 6.00 1.75 1.75 2.25 
3.00 3.00 4.00 1.00 1.00 1.50 
2.00 2.00 2.00 0.75 0.75 0.75 

D 

(36) 

The covariance matrix 

z = D T D  = 

582 
622 
634 

216.75 
226.75 
232.75 

622 
697 
685 

234.75 
253.5 
247.5 

634 
685 
703 
235.5 

248.25 
257.25 

216.75 
234.75 
235.5 

81.1875 
85.6875 
86.0625 

226.75 
253.5 

248.25 
85.6875 
92.375 
89.75 

232.75 
247.5 

257.25 
86.0625 

89.75 
94.625 

-. (37) 



A. Muller, The transformation step in factor theory 375 

Now 

S m = D Q m .  (38 )  

Sm 

-3 .69645 -0.05013 0.14578 
-4 .95704 0.47213 0.94462 
-8 .65349 0.42200 1.09039 

-12.34785 1.61132 0.42917 
-14.82742 1.22766 1.30498 
-23 .39140 2.51167 -1 .46939 
-22.13707 -1.72893 0.15278 
-17.22165 -0 .77289 -0 .06996 
-15.96315 -2 .53459 -0 .06180 

-9.82875 -0 .67263 -0 .36152 
-6 .13230 -0.62251 -0 .50729 
-3.69645 -0 .05013 0.14578 

(39) 

and from eq. (30), 

= 

-0 .50919 -0 .55529 -0.56006 -0 .19035 -0 .20187 -0 .20426 1 
-0 .36058 0.73809 -0.40296 0.00741 0.28208 -0 .28845 . 

0.68402 -0.10698 -0.62035 0.32068 0.12293 -0 .13375 

(40) 

The transformation matrix T was obtained using the NAG-based routine 
F04AMF [40] to solve a series of m linear equations involving S,,, and S of the form 

Sil aj + Si2 bj +. si3 cj = sij i = 1 . . . . .  nwave,  j = 1 . . . . .  m,  (41) 

where aj,  bj and cj are constants giving the elements of T corresponding to tij, 
where j = 1 . . . . .  m. 

Sll S12 

821 S22 

Sil Si2 

Sm 

S13 

S23 ( al 
: bl 

: c 1 
Si3 

a2 a3 

T 

[~ 11 S12 S13 

s21 ~22 ~23 
= : : : 

: ! 
~Sil Si2 8i3 
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The first column of T would therefore be produced by 

Sll al + S12 bl + S13 Cl = Sll ,  

$21 al + $22 bl + $23 c1 = $21, 

Sil  aj  + si2 bj  + si3 cj  = sij, i = 1 . . . . .  n w a v e .  

The unique transformation T and its inverse T -1, derived from the NAG routine 
F01AAF and satisfying the factor equations, are given by 

and 

-0.25221 -0.25698 -0.30308 1 
T = 0.39023 -0.75082 0.34786 (42) 

0.59869 0.08533 -0.70568 

l 
-1 .26060 0.52225 0.79885 1 

T - 1 =  -1.21897 -0.90592 0.07697 . 
-1.21688 0.33353 -0.73003 

(43) 

5.2. USING GENERAL TRANSFORMATION MATRIX T 

Using eq. (5) 

1 1 1 
2 1 1 
3 2 2 
4 2 4 
5 3 4 

~ =  6 4 9 
5 7 6 
4 5 5 
3 6 4 
2 3 3 
1 2 2 
1 1 1 

(44) 

and from eq. (6) 
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I 
1 1 0 0.50 0.50 0 / 

"~= 1 0 1 0.25 0 0.50 . (45) 
0 1 1 0 0.25 0 .25 )  

A comparison of eqs. (44) and (45) with (35) shows that, for perfect data, the factor 
solutions are equivalent to the true solutions. T results in all positive entries for 
and V, i.e. 

and 

hence, eqs. (11) and (12) hold. 

5.3. USING ROTATION R 

Since it has been established that a unique R does not exist which satisfies 
eqs. (1) and (2), we must now consider what happens when a general 3D rotation 
is used where 

R = 

cos v/cos~-  cos0 sine sin~ 

- sin ~cos ~ -  cos0 sin¢cos 

sin0sin¢ 

cos ~ sine + cos 0 cosCsin 

- sin ~sin¢ + cos 0 cos ~cos 

- sin0 cos~ 

sinvsin01 

cos tp'sin0[. 

cos0) 

(46) 

The values assigned to the Euler angles ~, 0 and ~ are completely arbitrary. 

Example 

Let ~ =  45 ° , 0 =  30 ° , ~ =  45 ° . 

R = 

I 0.06699 0.93302 0.35356 
-0 .93302 -0 .06699 0 . 3 5 3 5 6  / . 

0.35356 -0 .35356 0 .86603)  

(47) 

Substituting eqs. (39) and (47) into eq. (1) gives 
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Now, 

= 

-0.14931 -3.49705 -1 .19839 
-0 .43860 -4.99063 -0.76762 
-0.58791 -8.48767 -1.96602 
-2 .17884 -11.78047 -3.42433 
-1.67733 -14.37791 -3.67818 
-4.42995 -21.47338 -8.65477 

0.18418 -20.59252 -8.30575 
-0 .45729 -15.99163 -6.42274 

1.27360 -14.70230 -6.59358 
-0.15867 -8.99754 -4.02596 
-0.00935 -5 .50050 -2.82756 
-0.14931 -3.49705 -1.19839 

(48) 

0.06699 -0 .93300 0.35355 1 
R - l =  0.93300 -0 .06699 -0.35355 . (49) 

0.35355 0.35355 0.86602 

Substituting eqs. (40) and (49) into eq. (2) gives 

= 

0.54415 -0 .76366 0.11912 0.09371 -0 .23324 0.20815~ 
-0.69275 -0.52971 -0 .27622 -0.29147 -0 .25070 - 0 . 1 2 3 9 6 1 .  

0.28487 -0 .02802 -0.87771 0.21304 0.13482 -0 .29003 

(50) 

Other examples chosen were (~ = 30 °, 0 = 60 °, I/t= 60 °) and (~O = 45 °, 
0 = 60 °, gt = 90°). On comparing the factor solutions given by eqs. (48) and (50) 
with eq. (35), it is immediately apparent that 

S:g: StaR 

and 

V;~ R-1Vm . 

The presence of substantial negative entries in ~ and ~" indicates that these 
are indeed not the true solutions. The latter have physical and chemical meaning 
and must therefore be positive. It follows that the use of R in TFA will also result 
in solutions which do not resemble the true factors. 
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5.4. DEVELOPMENT OF NEW APPROACH 

Muller and Steele [1,2] have successfully reduced the problem of finding a 
suitable transformation to one of software-controlled optimization of the m ( m  - 1) 
independent variables in a general transformation matrix T '  of m factors having the 
form 

T ' =  TK, (51) 

with K an arbitrary scaling matrix. 
The approach of Muller and Steele can be more easily adapted for use at 

higher dimensions than previously possible using graphical representations. (See 
fig. 2. The symbol SFT indicates that the first stage of factor theory has been carried 
out, i.e. eigenanalysis and the determination ofm factors.) The standard factor equations 
are given by 

= SmT' (52) 

and 

= T ' - I  Vm. (53) 

A full account of T '  and the constraints required to regenerate D are given 
in refs. [1] and [2]. Additional background details on factor theory are to be found 
in an article by Muller [3]. 

5.5. MERITS OF NEW APPROACH 

Let us now consider the advantages of such an approach. 

(1) Firstly, the computer-oriented nature of factor theory is reinforced since 
this method allows the intermediate transformation step to be carried out 
entirely under software control. 

The input of the m(m - 1) variables of T '  is completely arbitrary (this is 
the main  advantage). Optimization of these variables using the NAG- 
based routine E04FDF [40] is quick and efficient, and the resulting factor 
solutions, when chosen from the correct diagonal sign choices (see point 
(3) below), give good approximations to the true factors. 

The arbitrary setting of the diagonal values o f T '  to + 1 provides a means 
of eliminating unsuitable solutions from the range of possible sign choices 
available, i.e. (+ + +), (+ + - ) ,  (+ - - ) ,  etc. Unsuitable solutions are defined 
as those which contain large negative values (greater than experimental 
error), where FSUMSQ ~ 0. FSUMSQ is a measure of the success of the 
optimization process. Maximum optimization therefore occurs when 
FSUMSQ, which contains the sum of the squares of the negative terms 

(2) 

(3) 
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Input m ( m  - 1) independent 
variables zl,.--, zs of T' 

T' = ~3 4-1 ~4 

~5 xs 4-1 

Input sign choice (4-1) for the 
diagonal entries of '17' 

Optimize the m ( m  - 1) independent variables of 

T' using the NAG routine E04FDF with 

the criterion that the sums of the squares of the 

negative terms of SmT' and T'-IVm are 

a minimum (FSUMSQ). 

YES 

and ~ are ] ~ and 
J 

possible solut~ns ~ solutions 

NO 

are not I 

j ...... 

Fig. 2. (caption on next page). 
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J Have all 

possible combinations of 

T' diagonal elements (+1) 

been tested? 

YES 

• A £ e  n e w  

values for ra(m - 1) 

independent variables 

I . ? 
of T reqmred. ., 

I NO 
( EXIT ) 

Fig. 2. Main steps in the recovery of the 
component spectra from the multicomponent 
experimental data matrix D (m = 3 case). 
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in S m T '  and T '-1V,,,, is a minimum. Now, the first primary eigenspectrum 
(by primary, one means the eigenspectra associated with the true components) 
will contain all positive or all negative values, depending on the sign on 
the first eigenvector. The factor solutions are to be found from among 
those whose sign for the first diagonal element corresponds to that for the 
first eigenspectrum. The best solution can then be determined from the 
value of  FSUMSQ, i.e. the best solution is that closest to FSUMSQ = 0. 

So far, no major disadvantages have been found. 

6. Conclusion 

Even from this very brief summary of the main factor rotational methods, it 
is at once apparent that many of the traditional approaches are extremely limited 
in their use. In practical terms, their generalization to higher factor space (above 
three) would not be feasible. 

The use of an orthogonal rotation R in factor theory appears in general to be 
highly suspect. This is indeed born out in the literature by frequent references to 
unsatisfactory solutions. Perfect data (although not a good substitute for experimental 
data) provides a means of  understanding the transformation step. It was concluded 
that under such circumstances, R results only in mathematical solutions. 

Against this background, the application of a non-orthogonal transformation 
effected under computer control seems a very realistic alternative to the problem 
of  finding a suitable transformation that will succeed in obtaining the primary 
components. 

References 

[1] A. Muller and D. Steele, Spectrochim. Acta 46A(1990)817. 
[2] A. Muller and D. Steele, Spectrochim. Acta 46A(1990)1177. 
[3] A. Muller, to be published. 
[4] N. Ohta, Anal. Chem. 45(1973)553. 
[5] Z.Z. Hugus, Jr. and A.A. E1-Awady, J. Phys. Chem. 75(1971)2954. 
[6] J.J. Kankare, Anal. Chem. 42(1970)1322. 
[7] P.C. Gillette, J.B. Lando and J.L. Koenig, Anal. Chem. 55(1983)630. 
[8] M.A. Sharaf and B.R. Kowalski, Anal. Chem. 53(1981)518. 
[9] M.A. Sharaf and B.R. Kowalski, Anal. Chem. 54(1982)1291. 
[10] D.W. Osten and B.R. Kowalski, Anal. Chem. 56(1984)991. 
[11] R.A. Gilbert, J.A. Llewellyn, W.E. Swartz and J.W. Palmer, Appl. Spectrosc. 36(1982)428. 
[12] P.J. Gemperline, J. Chemometrics 3(1989)549. 
[13] S.D. Brown, T.Q. Barber, R.J. Larivee, S.L. Monfre and H.R. Wilk, Anal. Chem. 60(1988)253R. 
[14] K.R. Beebe and B.R. Kowalski, Anal. Chem. 59(1987)1007A. 
[15] E.R. Malinowski and D.G. Howery, Factor Analysis in Chemistry (Wiley, UK, 1980). 
[16] B.F.J. Manly, Multivariate Statistical Methods. A Primer (Chapman and Hall, London, 1986). 
[17] R.W. Rozett and E.M. Petersen, Anal. Chem. 47(1975)1301. 



A. Muller, The transformation step in factor theory 383 

[18] F.J. Luk, SIAM J. Sci. Stat. Comput. 5(1984)764. 
[19] M. Forina, C. Armanino, S. Lanteri and R. Leardi, J. Chemometrics 3(1988)115. 
[20] C.G. Swain, H.E. Bryndza and M.S. Swain, J. Chem. Inf. Comput. Sci. 19(1979)19. 
[21] D.H. Lowenthal and K.A. Rahn, Atm. Environ. 21(1987)2005. 
[22] P.C. Gillette, J.B. Lando and J.L. Koenig, Fourier Transform Infrared Spectroscopy (Application 

to Chemical Systems), Vol. 4, ed. J.R. Ferraro and L.J. Basile (Academic Press, New York, 
1985). 

[23] P.H. Weiner, E.R. Malinowski and A.R. Levinstone, J. Phys. Chem. 74(1970)4537. 
[24] P.K. Hopke, D.J. Alpert and B.A. Roscoe, Comput. Chem. 7(1983)149. 
[25] B.A. Roscoe and P.K, Hopke, Comput. Chem. 5(1981)1. 
[26] E.R. Malinowski, ASTM Special Technical Publication, Comp. Quant. IR Anal. 934(1987)155. 
[27] E.R. Malinowski, Anal. Chim. Acta 103(1978)339. 
[28] M. McCue and E.R. Malinowski, Appl. Spectrosc. 37(1983)463. 
[29] E.R. Malinowski and M. McCue, Anal. Chem. 49(1977)284. 
[30] R.P. Gluch, Amer. Lab (USA) 14(1982)98. 
[31] C. Po Wang and T.L. Isenhour, Appl. Spectrosc. 41(1987)185. 
[32] M. Ruprecht and J.T. Clerc, J. Chem. Inf. Comput. Sci. 25(1985)241. 
[33] S.N. Deming and S.L. Morgan, Anal. Chem. 45(1973)278A. 
[34] H. Martens, Anal. Chim. Acta 112(1979)423. 
[35] D.J. Leggett, Anal. Chem. 49(1977)276. 
[36] O.S. Borgen and B.R. Kowalski, Anal. Chim. Acta 174(1985)1. 
[37] J. Chen and L. Hwang, Anal. Chim. Acta 133(1981)271. 
[38] B. Vandeginste, Pure Appl. Chem. 55(1983)2007. 
[39] B. Vandeginste, R. Essers, T. Bosman, J. Reijnen and G. Kateman, Anal. Chem. 57(1985)971. 
[40] Numerical Algorithms Group Ltd., Mayfield, 256 Banbury Road, Oxford OX2 7DE, UK. 


